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In the article, we carry out the element-by-element tracking simulations with the Relativistic Heavy Ion
Collider (RHIC) Blue ring lattice to numerically calculate the eigenmode projection parameters. Eigenmode
projection parameters are being measured and tested in RHIC for the possible future continuous global
coupling measurement and correction. The simulation calculations and analytical predictions prove that the
local eigenmode projection measurement does hint the global coupling coefficient, including its amplitude
and phase. Therefore, to determine the global coupling, one observation point in the ring is sufficient. And
comparisons between the simulation calculations and the analytical predications from different linear weak
coupling approaches are also presented.

1 Eigenmode Projections

For the linearly coupled optics, x and y coordinates of the free oscillation can be cast as
{
xn = AI,x cos[2πQ1(n− 1) + φI,x] +AII,x cos[2πQ2(n− 1) + φII,x]
yn = AI,y cos[2πQ1(n− 1) + φI,y] +AII,y cos[2πQ2(n− 1) + φII,y]

. (1)

In the following, we assume that eigenmode I is more linked to the horizontal plane, and eigenmode II is
more linked to the vertical plane. QI and QII are the two eigentunes. Ai,z , i = I, II , z = x, y, is the
amplitude of the eigenmode i’s projection onto the z axis. They are non-negative numbers. φi,z is the phase
of the eigenmode i’s projection onto the the z axis. Ai,z and φi,z actually are the eigenmode projection
parameters. They define the eigenmode projection ellipses in the (x − y) plane.

Besides the two eigentunes QI and QII , we define another four weak difference coupling observables [1].
RI and RII are the eigenmode projection amplitude ratios,





RI =
AI,y
AI,x

RII =
AII,x
AII,y

. (2)

Ri is linked to eigenmode i. Under the uncoupled situation, RI,II = 0. And we define ∆φI,II as the
eigenmode projection phase differences,

{
∆φI = φI,y − φI,x
∆φII = φII,x − φII,y . (3)

∆φi is linked to eigenmode i. Under the uncoupled situation, ∆φI and ∆φII have no meaning.
The fractional eigentune split |QI −QII − p|, where p is the integer tune split, has been conventionally

used as the coupling observable in the skew quadrupole scan decoupling. And it is also adopted in the novel
skew quadrupole modulations [2, 3, 4, 5]. There, to obtain the residual coupling from the eigentune split,
we have to scan or modulate skew quadrupoles.

With the high resolution phase locked loop (PLL) tune measurement system, the above six coupling
observables can be continuously measured [6]. They define the local coupling information, the eigenmode
projection ellipses in (x− y) plane, according to Eq. (1). From their analytical calculations, we found they
also tell the global coupling coefficient, shown in the Appendix.

In the following, we carry out the element-by-element tracking simulations with the Relativistic Heavy Ion
Collider (RHIC) Blue ring lattice to numerically calculate the eigenmode projection parameters. Compar-
isons between the simulation calculations and the analytical predications from different linear weak coupling
approaches are also presented.
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Figure 1: RI and RII along the ring.

2 Simulation calculations and analytical predictions

In this section, we carry out the element-by-element simulation with the RHIC Blue ring lattice to numerically
calculate the above defined four eigenmode projections, RI,II and ∆φI,II .

A single particle with non-zero initial position coordinates is launched at IP6. 4096 turn’s simulation
tracking is performed with the SAD code. The turn-by-turn (TBT) (x, y) data are recorded at each BPM
or markers. According to Eq. (1), the eigenmode’s projection parameters Ai,z and φi,z are calculated with
the fast Fourier transformation (FFT) technique.

Each RHIC ring has three correction skew quadrupole families. Each family has 16 skew quadrupole
magnets. As an example, in the section we set the uncoupled tunes (Qx,0, Qy,0) = (28.22, 29.23). We
artificially add coupling sources into the originally uncoupled optics model by setting skew quadrupole
families F1 and F3 to(ksdl)1,3 = 0.0002m−1.

2.1 Simulation calculations from the element-by-element tracking

Fig. 1 and Fig. 2 shows RI and RII along the ring and in the first 700m from IP6. Fig. 3 shows RIRII along
the ring. Fig. 4 and Fig. 5 show tan(∆φI,II) along the ring and in the first 700m from IP6.

According to Fig. 1 and Fig. 2, the eigenmode projection’s amplitude ratios vary along the ring. However,
it is noticed from Fig. 4 that the variation of RIRII is very small,

{
(RIRII)mean = 0.3738
(RIRII)rms = 0.0053

, (4)

The rms value is about 1.4% of the mean value.

2.2 Analytical predications of projection amplitude ratios

2.2.1 from Hamiltonian perturbation approach

According to weak linear difference coupling’s Hamiltonian approach, RIRII is constant along the ring, as
given by Eq. (19). RIRII is decided by the uncoupled tune split ∆ and the amplitude of the defined coupling
coefficient |C−|. According to Hamiltonian perturbation approach, for the above lattice,

RIRII = 0.3597, (5)

which is about 3.7% away from the calculated < RIRII > from the above simulation. Hamiltonian per-
turbation approach predicts < RIRII > very well. However, it fails in giving the predications to the samll
variations in RIRII along the ring.
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Figure 2: RI and RII in the first 700 m.
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Figure 3: RIRII along the ring.
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Figure 4: tan(∆φI,II ) along the ring.
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Figure 5: tan(∆φI,II) in the first 700 m.

2.2.2 from matrix perturbation approach

According to the linear weak difference coupling’s matrix perturbation approach, RIRII is decided by r,
as given by Eq. (35). r is calculated according to Eq. (32). Fig. 6 shows the calculated r from the matrix
perturbation approach and the strict matrix approach. The strict matrix approach is based on the strict
linear coupling’s action-angle parameterization. The strict matrix approach gives r = 0.8532±0.001542, the
matrix perturbation approach gives r = 0.8525± 0.0003168. They agree very well in the averaged r. And
they show the r jumps at the same locations. r jump happens at the individual coupling sources.

Fig. 7 shows RIRII along the ring calculated according to Eq. (32), together with these from the simu-
lation calculation. The analytical prediction from the matrix perturbation approach gives

{
(RIRII)mean = 0.3760
(RIRII)rms = 0.00102

. (6)

The mean value is 0.59% away from the simulation calculation.

2.2.3 from strict matrix approach

Fig. 8 shows RIRII calculated from the strict matrix approach Eq. (43), together with these from the
simulation calculation. It gives {

(RIRII)mean = 0.3737
(RIRII)rms = 0.0053

. (7)

The predictions of RIRII agree very well with the simulation calculations along the ring, even at local
observation points. .

2.3 Analytical predications of projection phase differences

Both of Hamiltonian and matrix perturbation approaches predict the projection phase differences. From the
perturbation approaches,

tan ∆φI = − tan ∆φII (8)

This holds very well in the simulation calculation result, as shown in Fig. 4 and Fig. 5.
Fig. 9 shows the predictions of the phase differences calculated from C− in the Hamiltonian perturbation

approach. Fig. 10 shows the predictions of the phase differences calculated from h− in matrix perturbation
approach. Both agree very well with the simulation results, except at several points. It is noticed that phases
of C− and h− have opposite signs. Fig. 11 gives the phase differences calculated from strict matrix approach
according to Eq. (44).
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Figure 6: r from the strict and perturbation matrix approaches.
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Figure 7: RIRII calculated from perturbation matrix approach.
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Figure 8: RIRII calculated from strict matrix approach.
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Figure 9: Phase difference calculated from Hamiltonian perturbation approach.
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Figure 10: Phase difference calculated from matrix perturbation approach.
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Figure 11: Phase difference calculated from strict matrix approach.
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Figure 12: RIRII from the matrix perturbation approach and from the simulation calculation. There is only
one coupler in the uncoupled optics.

2.4 Summary

The simulation calculations and analytical predictions prove that the local eigenmode projection measure-
ment does hint the global coupling coefficient, including its amplitude and phase. Hamiltonian perturbation
and matrix perturbation approaches give very good prediction of the mean value of RIRII along the ring.
< RIRII > tells the global coupling strength. The variations in RIRII is due to the distribution of the
couplers. The rms value of RIRII along the ring is much smaller than the mean value.

Both of Hamiltonian and matrix perturbation approaches predict the projection phase differences well.
They tell the phase of the coupling coefficient C− in the Hamiltonian perturbation approach, or h− in the
matrix perturbation approach. The phases of C− and h− changes along the ring. However, the phase
differences at different observation points are related, as shown by Eq. (12).

3 Other interested examples

In this section, we give the RIRIIs from different simulation lattices. The predications from the matrix
perturbation and strict matrix approaches are also given.

3.1 Only one coupler in the ring

We add only one coupler SQSKLC6 into the uncoupled optics model. The uncoupled tunes are (Qx,0, Qy,0) =
(28.22, 29.23), SQSKLC6 ’s strength is set to (ksdl) = 0.003m−1.

Fig. 12 shows RIRII along the ring from the matrix perturbation approach and from the simulation
calculation. From matrix perturbation approach, RIRII should be constant along the ring. However, from
the element-by-element tracking simulation, RIRII oscillates. And the rms value is not small comparing
with the mean value.

Fig. 13 shows RIRII along the ring from the strict matrix approach and from the simulation calculation.
They agree very well along the ring.

3.2 Only two couplers in the ring

Here we add two couplers SQSKLC6 and SQSKLC8 into the uncoupled optics. Their strengths are set to
(ksdl) = 0.003m−1.

Fig. 14 shows RIRII along the ring from the matrix perturbation approach and from the simulation
calculation. From matrix perturbation approach, there are two jumps in RIRII at the locations of the two
couplers. From the element-by-element tracking simulation calculation, the jumps also show up. However,
between the two predicted jumps, RIRII oscillates.
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Figure 13: RIRII from the strict matrix approach and from the simulation calculation. There is only one
coupler in the uncoupled optics.

Fig. 15 shows RIRII along the ring from the strict matrix approach and from the simulation calculation
approach. The RIRII shapes along the ring are very similar. It not clear why RIRIIs from the strict matrix
approach are 0.01 larger than these from the simulation calculation.

3.3 Only four couplers in the ring

Then we add four couplers into the uncoupled optics. They are SQSKLC6, SQSKLC8, SQSKLC12, and
SQSKLC2. Their strengths are set to (ksdl) = 0.003m−1. These four couplers’ contributions to the global
coupling coefficient C− cancel each other.

Fig. 16 shows RIRII along the ring from the matrix perturbation approach and from the simulation
calculation. The average of RIRII is very small, which is due to the weak global coupling. From matrix
perturbation approach, there should be four jumps in RIRII along the ring. However, from the element-by-
element tracking simulation calculation, these predicted jumps are not apparent.

Fig. 17 shows RIRII along the ring from the strict matrix approach and from the simulation calculation.
The predictions from the strict matrix approach agree very well with the simulation calculations.

3.4 Summary

We compared the simulation calculations of RIRII with the predications from the matrix perturbation
and strict matrix approaches. Matrix perturbation approach predicts< RIRII > very well. However, the
predicted jumps in RIRII at the locations of the couplers are not verified with the simulation calculations.
Strict matrix approach always gives very good predictions to RIRII along the ring under different simulation
lattices.

4 RIRII versus the uncoupled tune split

Here we calculate RIRII versus the uncoupled tune split ∆. From the Hamiltonian and matrix perturbation
approaches, when the uncoupled tune split ∆ = 0, RIRII = 1. This feature is used for PLL measured RIRII
calibration. Fig. 18 shows the amplitude ratios versus the uncoupled tune split. The optics is the same as
that in section 2. To get better calibration, the design tunesplit should be reached below 0.001.

8



 0.32

 0.33

 0.34

 0.35

 0.36

 0.37

 0.38

 0.39

 0.4

 0.41

 0.42

 0  500  1000  1500  2000  2500  3000  3500  4000

R
IR

II

 s [m] 

from matrix perturbation approach
from simulation

Figure 14: RIRII from the matrix perturbation approach and from the simulation calculation. There are
only two couplers in the uncoupled optics.
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Figure 15: RIRII from the strict matrix approach and from the simulation calculation. There are only two
couplers in the uncoupled optics.
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Figure 16: RIRII from the matrix perturbation approach and from the simulation calculation. There are
only four couplers in the uncoupled optics.
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Figure 17: RIRII from the strict matrix approach and from the simulation calculation. There are only four
couplers in the uncoupled optics.
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Figure 18: c11 comparison along the ring.
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Figure 19: c11 predication from matrix perturbation approach.

5 Predication of C from matrix perturbation approach

Here we compare the elements of coupling matrix C between the strict matrix approach and the matrix
perturbation approach. According to weak linear difference coupling’s matrix perturbation approach,

C = UICU−1
II . (9)

We calculate the normalized coupling matrix C according to Eq. (32). In above Uis, we use uncoupled Twiss
parameters.

We still assume the uncoupled tunes (Qx,0, Qy,0) = (28.22, 29.23) and we artificially add four couplers
into the uncoupled optics. They are SQSKLC6, SQSKLC8, SQSKLC12, and SQSKLC2. Their strengths
are set to (ksdl) = 0.003m−1. These four couplers’ contributions to the global coupling coefficient C− cancel
each other. Fig. 19 to Fig. 22 show the comparisons of c11,c12, c21, and c22 from matrix perturbation and
strict matrix approaches.

The predication accuracy of the matrix perturbation approach changes with different coupling situations.
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Figure 20: c12 predication from matrix perturbation approach.
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Figure 21: c21 predication from matrix perturbation approach. .
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Figure 22: c22 predication from matrix perturbation approach. .
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7 Appendix

7.1 Hamiltonian perturbation approach [1]

The perturbation Hamiltonian theory [7, 8, 9] gives the isolated linear difference coupling Hamiltonian as

H2 = |C−|√axay cos(Ψx −Ψy + ∆ · ϕ+ χ) (10)

where ∆ is the uncoupled fractional tune split, ∆ = Qx,0 −Qy,0 − p. The coupling coefficient C− is

C− = |C−|eiχ =
1

2π

∫ L

0

√
βxβykse

i[Φx−Φy−2π∆·s/L]dl (11)

One can prove that

C−2 = C−1 e
i(∆Φx −∆Φy − 2πds

L ·∆), (12)

where C−1 and C−2 are the coupling coefficients calculated at point 1 and 2, respectively. ∆Φx and ∆Φy
are the unperturbed betatron phase advances, and ds is the distance from point 1 to point 2. Therefore,
|C−| is constant at different reference point. And knowing the coupling coefficient at one point, the coupling
coefficient at other point can be calculated according to Eq. (12).

After some algebra calculations, the single particle motion is given by
{
x(s) =

√
2βx{a cos[Ψx + (ν −∆/2)ϕ− χ/2)] + b cos[Ψx − (ν + ∆/2)ϕ− χ/2)]}

y(s) =
√

2βy{c cos[Ψy + (ν + ∆/2)ϕ+ χ/2)] + d cos[Ψy − (ν −∆/2)ϕ+ χ/2)]} (13)

where

ν =
1

2

√
∆2 + |C−|2 (14)





c
a =

|C−|
2ν + ∆

b
d

= − |C
−|

2ν + ∆

(15)

According to Eq. (13), the eigentunes are

{
QI = Qx,0 − 1

2∆ + 1
2

√
∆2 + |C−|2

QII = Qy,0 + 1
2∆− 1

2

√
∆2 + |C−|2 (16)

The fractional eigentune split is
|QI −QII − p| =

√
∆2 + |C−|2. (17)

Comparing Eq. (13) to Eq. (1),




RI =

√
βy
βx
· |C

−|
2ν + ∆

RII =

√
βx
βy
· |C

−|
2ν + ∆

(18)

{
∆φI = χ
∆φII = π − χ (19)

And according to Eq. (18), when the coupling gets weaker, that is, |C−| gets smaller, the amplitude
ratios RI and RII get smaller. When |C−| = 0, RI = RII = 0.

And it is noticed that RIRII is independent of local β functions. Knowing the measured eigentune split
and RI , RII , the uncoupled tune split ∆ and the coupling coefficient amplitude |C−| can be determined,

RIRII =
|C−|2

(
√

∆2 + |C−|2 + ∆)2
, (20)

|C−| = 2
√
RIRII

1 +RIRII
(QI −QII − p), (21)

∆ =
1−RIRII
1 +RIRII

(QI −QII − p). (22)
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7.2 Matrix perturbation approach [10]

In the normalized coordinates are defined as

X = U−1X, (23)

U =

(
UI 0
0 UII

)
, (24)

Ui =

( √
βi 0
−αi√
βi

1√
βi

)
. (25)

They also can be expressed with

X = V




√
2JI cos ΦI

−√2JI sin ΦI√
2JII cos ΦII

−√2JII sin ΦII


 , (26)

V =

(
rI C

−C
+

rI

)
. (27)

Under thin lens and weak coupling assumption, using the uncoupled Twiss parameters in U, considering
Eq. (26) and (23),

{
x = r

√
βx
√

2JI cos ΦI + c11

√
βx
√

2JII cos ΦII − c12

√
βx
√

2JII sin ΦII
y = −c22

√
βy
√

2JI cos ΦI − c12

√
βy
√

2JI sin ΦI + r
√
βy
√

2JII cos ΦII
. (28)

Then the amplitude ratios and the phase differences are





RI =

√
βy
βx

√
c222 + c212
r

RII =

√
βx
βy

√
c211 + c212
r

, (29)





∆φI,0 = − arctan c12
c22

∆φII,0 = arctan c12
c11

. (30)

For weak difference coupling, Under thin lens and weak coupling assumption, according to [10],

|Tr(A−B)| = |2 cos(2πQ1)− 2 cos(2πQ2)| =
√

4(cos 2πµx − cos 2πµy)2 + 4 sin2 π(µx + µy)|h−|2, (31)

r =

√√√√1

2
+

1

2

√
sin2 π(µx − µy)

sin2 π(µx − µy) + 1
4 |h−|2

, (32)

C = − sinπ(Qx,0 +Qy,0)

rT r(A−B)

(
Re{h−} Im{h−}
−Im{h−} Re{h−}

)
. (33)

h− =

N∑

j=1

(
√
βxβyksdl)je

i[π(Qx,0−Qy,0)−(φx,j−φy,j )]. (34)

The fractional eigen tune split is

(QI −QII − p)2 = (Qx,0 −Qy,0 − p)2 + (
1

2π
|h−|)2, (35)

which is equal to Eq. (17) from Hamiltonian perturbation approach.
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And considering Eq. (33), together with Eqs. (29) and (30),





RI =

√
βy
βx

√
1− r2

r

RII =

√
βx
βy

√
1− r2

r

RIRII = 1−r2

r2

, (36)

{
∆φI,0 = π − χh
∆φII,0 = χh

, (37)

χh is the phase of h−, h− = |h−|eiχh .

7.3 Strict matrix approach [13]

In action-angle parameterization, single particle motion is represented by



x
x′

y
y′


 = P ·




√
2J1 cos Φ1

−√2J1 sin Φ1√
2J2 cos Φ2

−√2J2 sin Φ2


 , (38)

P =




p11 0 p13 p14

p21 p22 p23 p24

p31 p32 p33 0
p41 p42 p43 p44


 , (39)

where JI,II , ΦI,II are the actions and betatron phases of the two eigenmodes.
Matrix P can be derived from the eigenvectors of the one-turn transfer map. And it also has tight

connections to Twiss and coupling parameters defined in Edwards-Teng’s linear coupling parameterization

P =




r
√
β1 0 c11

√
β2 − c12α2/

√
β2 c12/

√
β2

−α1r/
√
β1 r/

√
β1 c21

√
β2 − c22α2/

√
β2 c22/

√
β2

−c12α1/
√
β1 − c22

√
β1 c12/

√
β1 r

√
β2 0

c11α1/
√
β1 + c21

√
β1 −c11/

√
β1 −α2r/

√
β2 r/

√
β2


 . (40)

In order to easily distinguish Twiss parameter γ, here we use r to take place of the coupling parameter γ in
other literatures.

According to Eq. (38),
{
x = p11

√
2J1 cos Φ1 + p13

√
2J2 cos Φ2 − p14

√
2J2 sin Φ2

y = p31

√
2J1 cos Φ1 − p32

√
2J1 sin Φ1 + p33

√
2J2 cos Φ2

. (41)

Therefore, 



RI =
√
p2

31 + p2
32/p11

RII =
√
p2

13 + p2
14/p33

, (42)





∆φI = arctan(p32/p31)

∆φII = arctan(p14/p13)
. (43)

According to Eq.( 40), RI,II and ∆φI,II are expressed in Twiss and coupling parameters,





RI =
√
β1c222 + 2α1c22c12 + γ1c212 / (r

√
β1)

RII =
√
β2c211 − 2α2c11c12 + γ2c212 / (r

√
β2)

(44)





∆φI = arctan(−c12/(α1c12 + β1c22))

∆φII = arctan(c12/(−α2c12 + β2c11))
(45)

where we define γ1 = (1 + α2
1)/β1, γ2 = (1 + α2

2)/β2.
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